— Exercises -

1. Radius of convergence. Compute the radius of convergence of the power series $\sum_{n \geq 0} a_{n} x^{n}$ in the two following cases:
(a) $a_{n}=\frac{P(n)}{Q(n)}$, where P and Q are two polynomial functions. Hint: if $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=$ l then $R=1 / l$.
(b) a_{n} is the n-th digit in the decimal expansion of π. Hint: a_{n} is bounded and π is not a decimal number.
2. Manipulating power series.
(a) Prove that $\frac{\ln (1-x)}{1-x}$ expands as a power series at $x_{0}=0$ as $-\sum_{k \geq 1}\left(\sum_{j=1}^{k} \frac{1}{j}\right) x^{k}$.
(b) Find a power series for $F(x)=\int_{0}^{x} \frac{\ln (1-t)}{t} d t$ at $x_{0}=0$. For which x does this series converges?

3. Analytic functions.

Definition: Let $I \subset \mathbb{R}$ be an open interval. A function $f: I \rightarrow \mathbb{R}$ is called real analytic when

$$
\forall x_{0} \in I, \exists R>0 \text { s.t. } \forall x \in\left(x_{0}-R, x_{0}+R\right), \quad f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

for some coefficients $\left(a_{n}\right)_{n \geq 0}$ depending on x_{0}.
Note: the above series is called a power series centered at x_{0}.
(a) Compare the set $\mathcal{C}^{\omega}(\mathbb{R})$ of analytic functions on \mathbb{R} to the set $\mathcal{C}^{\infty}(\mathbb{R})$.
(b) Show the analytic continuation property: if two analytic functions f and g on I coincide on an open subset $U \subset I$, then they coincide everywhere on I.
(c)* Show that a power series converging on an interval I defines an analytic function.
(d) We put $f(x)=\frac{1}{1+x^{2}}$ for every $x \in \mathbb{R}$. We want to show that f is analytic at 1 (and at $-1)$ but that the power series of f at 0 has radius only 1 .
i. Determine the power series expansion of f at 0 and compute its radius.
ii. Check that $\left(2+2 x+x^{2}\right) \sum_{n \geq 0} a_{n} x^{n}=1$ implies $a_{0}=\frac{1}{2}, a_{1}=\frac{-1}{2}$ and $a_{n+2}=$ $-a_{n+1}-\frac{a_{n}}{2}$ for every $n \geq 0$.
iii. Show that there exist two real numbers M and C such that $\left|a_{n}\right| \leq M \cdot C^{n}$ for every $n \geq 0$. Deduce from this that the series $\sum_{n \geq 0} a_{n} x^{n}$ has a nonzero radius.
iv. Deduce from this that f is analytic at 1 .

4. Solving differential equations using power series.

Text p. 58312.59

