— Exercises —

- 1. **Radius of convergence.** Compute the radius of convergence of the power series $\sum_{n\geq 0} a_n x^n$ in the two following cases:
 - (a) $a_n = \frac{P(n)}{Q(n)}$, where *P* and *Q* are two polynomial functions. *Hint: if* $\lim_{n\to\infty} |a_{n+1}/a_n| = l$ then R = 1/l.
 - (b) a_n is the *n*-th digit in the decimal expansion of π . *Hint:* a_n *is bounded and* π *is not a decimal number.*

2. Manipulating power series.

- (a) Prove that $\frac{\ln(1-x)}{1-x}$ expands as a power series at $x_0 = 0$ as $-\sum_{k\geq 1} \left(\sum_{j=1}^k \frac{1}{j}\right) x^k$.
- (b) Find a power series for $F(x) = \int_0^x \frac{\ln(1-t)}{t} dt$ at $x_0 = 0$. For which x does this series converges?

— Problems —

3. Analytic functions.

Definition: Let $I \subset \mathbb{R}$ be an open interval. A function $f : I \to \mathbb{R}$ is called *real analytic* when

$$\forall x_0 \in I, \exists R > 0 \text{ s.t. } \forall x \in (x_0 - R, x_0 + R), \quad f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

for some coefficients $(a_n)_{n\geq 0}$ depending on x_0 . Note: the above series is called a power series centered at x_0 .

- (a) Compare the set $C^{\omega}(\mathbb{R})$ of analytic functions on \mathbb{R} to the set $C^{\infty}(\mathbb{R})$.
- (b) Show the analytic continuation property: if two analytic functions *f* and *g* on *I* coincide on an open subset U ⊂ I, then they coincide everywhere on *I*.
- (c)* Show that a power series converging on an interval I defines an analytic function.
- (d) We put $f(x) = \frac{1}{1+x^2}$ for every $x \in \mathbb{R}$. We want to show that f is analytic at 1 (and at -1) but that the power series of f at 0 has radius only 1.
 - i. Determine the power series expansion of f at 0 and compute its radius.
 - ii. Check that $(2 + 2x + x^2) \sum_{n \ge 0} a_n x^n = 1$ implies $a_0 = \frac{1}{2}$, $a_1 = \frac{-1}{2}$ and $a_{n+2} = -a_{n+1} \frac{a_n}{2}$ for every $n \ge 0$.
 - iii. Show that there exist two real numbers M and C such that $|a_n| \le M \cdot C^n$ for every $n \ge 0$. Deduce from this that the series $\sum_{n>0} a_n x^n$ has a nonzero radius.
 - iv. Deduce from this that *f* is analytic at 1.

4. Solving differential equations using power series.

Text p. 583 12.59